If it's not what You are looking for type in the equation solver your own equation and let us solve it.
361x^2-25=0
a = 361; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·361·(-25)
Δ = 36100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36100}=190$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-190}{2*361}=\frac{-190}{722} =-5/19 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+190}{2*361}=\frac{190}{722} =5/19 $
| 20x+90=10x+130 | | 8-3x+2=2(x+2) | | 43,200x-100+150=46,125x-175 | | 4r-9=3.5r-9 | | 19u-7u+u-12u=16 | | 8(a+2)=8 | | 0.45x+0.70(80-x)=0.55 | | k(-3)=9 | | 9+x-6=2x-9 | | 4x-3=-3(x-6) | | 87-5x=-2x-54 | | 3x-15=4x+58 | | -5=5r-2 | | 4n/16-2n/16=6/16 | | X+6=c | | 13b+3b-10b-2b-2b=10 | | 4(y-3)-8y=-28 | | y+9.4=−12.2 | | 5/6x+4=19 | | 14+2p=20+1.5 | | 5x+6x-64=32-5x | | 5y+35=6(16)+3 | | -2=5r–2 | | 7(2x+5)=5(x-7) | | 2+4a=4+a | | -3r-r=6 | | y-2.5=8.5. | | 4=2x-6=12 | | 4x10=2x+14 | | 2x^2-3x+3x-26=180 | | 60÷5(7-3)=x | | 29+10^(t+12)=74 |